On the Hilbert problem for semi-linear Beltrami equations
نویسندگان
چکیده
The presented paper is devoted to the study of well-known Hilbert boundary-value problem for semi-linear Beltrami equations with arbitrary boundary data that are measurable respect logarithmic capacity. Namely, we prove here corresponding results on existence, regularity, and representation its nonclassical solutions a geometric interpretation values as angular (along nontangential paths) limits in comparison classical approach PDE. For this purpose, apply completely continuous operators by Ahlfors–Bers, first all obtain equations, generally speaking no conditions, then derive their through Vekua-type so-called generalized analytic functions sources. Besides, similar Poincaré directional derivatives and, particular, Neumann Poisson type. obtained applied some problems mathematical physics describing such phenomena diffusion physical chemical absorption, plasma states, stationary burning anisotropic inhomogeneous media.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولBifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملOn Semi-implicit Splitting Schemes for the Beltrami Color Flow
The Beltrami flow is an efficient non-linear filter, that was shown to be effective for color image processing. The corresponding anisotropic diffusion operator strongly couples the spectral components. Usually, this flow is implemented by explicit schemes, that are stable only for small time steps and therefore require many iterations. In this paper we introduce a semi-implicit scheme based on...
متن کاملSemi-linear wave equations
This survey reviews some of the recent work on semilinear wave equations, in particular the wave map equation. We discuss wellposedness, as well as the construction of special solutions and their stability. Mathematics Subject Classification (2010). 35L05, 35L52, 37K40, 37K45, 53Z05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2023
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-023-06356-7